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Abstract. We combine ideas from machine learning (ML) and operations research and
management science (OR/MS) in developing a framework, along with specific methods, for
using data to prescribe optimal decisions in OR/MS problems. In a departure from other
work on data-driven optimization, we consider data consisting, not only of observations of
quantities with direct effect on costs/revenues, such as demand or returns, but also pre-
dominantly of observations of associated auxiliary quantities. Themain problem of interest is
a conditional stochastic optimization problem, given imperfect observations, where the joint
probability distributions that specify the problem are unknown. We demonstrate how our
proposed methods are generally applicable to a wide range of decision problems and prove
that they are computationally tractable and asymptotically optimal under mild conditions,
even when data are not independent and identically distributed and for censored obser-
vations. We extend these to the case in which some decision variables, such as price, may
affect uncertainty and their causal effects are unknown. We develop the coefficient of
prescriptiveness P to measure the prescriptive content of data and the efficacy of a policy
from an operations perspective. We demonstrate our approach in an inventory man-
agement problem faced by the distribution arm of a large media company, shipping 1
billion units yearly. We leverage both internal data and public data harvested from
IMDb, Rotten Tomatoes, and Google to prescribe operational decisions that outperform
baseline measures. Specifically, the data we collect, leveraged by our methods, account
for an 88% improvement as measured by our coefficient of prescriptiveness.
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1. Introduction
In today’s data-rich world, many problems of oper-
ations research and management science (OR/MS) can
be characterized by three primitives:

a. Data {y1, . . . , yN} on uncertain quantities of in-
terest Y ∈ = ⊂ Rdy , such as simultaneous demands.

b. Auxiliary data {x1, . . . , xN} on associated cova-
riates X ∈ - ⊂ Rdx , such as recent sale figures, volume
of Google searches for a products or company, news
coverage, or user reviews, where xi is concurrently
observed with yi.

c. A decision z constrained in ] ⊂ Rdz made after
some observation X # x with the objective of mini-
mizing the uncertain costs c(z;Y).

Traditionally, decision making under uncertainty
in OR/MS has largely focused on the problem

vstoch # min
z∈]

E [c(z;Y)],

zstoch ∈ argmin
z∈]

E [c(z;Y)] (1)

and its multiperiod generalizations and addressed
its solution under a priori assumptions about the dis-
tribution µY of Y (cf. Birge and Louveaux 2011), or, at
times, in the presence of data {y1, . . . , yn} in the as-
sumed form of independent and identically distributed
(iid) observations drawn from µY (cf. Kleywegt et al.
2002, Shapiro 2003, Shapiro and Nemirovski 2005).
(Wewill discuss examples of (1) inSection 1.1.) By and
large, auxiliary data {x1, . . . , xN} has not been exten-
sively incorporated into OR/MS modeling, despite its
growing influence in practice.
From its foundation, machine learning (ML), on the

other hand, has largely focused on supervised learning,
or the prediction of a quantity Y (usually univariate) as
a function of X, based on data {(x1, y1), . . . , (xN , yN)}.
By and large, ML does not address optimal decision-
making under uncertainty that is appropriate forOR/
MS problems.
At the same time, an explosion in the availability and

accessibility of data and advances in ML have enabled
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applications that predict, for example, consumer demand
forvideogames (Y) based on onlineweb-search queries
(X) (Choi andVarian 2012) or box-office ticket sales (Y)
based on Twitter chatter (X) (Asur and Huberman
2010). There are many other applications of ML that
proceed in a similar manner: use large-scale auxiliary
data to generate predictions of a quantity that is of
interest toOR/MSapplications (Gruhl et al. 2005, Goel
et al. 2010, Da et al. 2011, Kallus 2014). However, it
is not clear how to go from a good prediction to a good
decision. A good decision must take into account un-
certainty wherever present. For example, in the absence
of auxiliary data, solving (1) based on data {y1, . . . , yn}
but using only the sample mean y # ∑N

i#1 y
i/N ≈ E [Y]

and ignoring all other aspects of the data would
generally lead to inadequate solutions to (1) and an
unacceptable waste of good data.

In this paper, we combine ideas from ML and OR/
MS in developing a framework, along with specific
methods, for using data to prescribe optimal de-
cisions in OR/MS problems that leverage auxiliary
observations. Specifically, the problem of interest is

v∗(x) # min
z∈]

E
[
c(z;Y)|X # x

]
,

z∗(x) ∈ ]∗(x) # argmin
z∈]

E
[
c(z;Y)|X # x

]
, (2)

where the underlying distributions are unknown and
only data SN # {(x1, y1), . . . , (xN , yN)} is available. The
solution z∗(x) to (2) represents the full-information
optimal decision, which, via full knowledge of the
unknown joint distribution µX,Y of (X, Y), leverages
the observation X # x to the fullest possible extent in
minimizing costs.Weuse the termpredictive prescription
for any function z(x) that prescribes a decision in
anticipation of the future given the observationX # x.
Our task is to use SN to construct a data-driven pre-
dictive prescription ẑN(x). Our aim is that its perfor-
mance in practice, E [c(ẑN(x);Y)|X # x], is close to the
full-information optimum, v∗(x).

Our key contributions include the following.
a. We propose various ways for constructing pre-

dictive prescriptions ẑN(x) The focus of the paper is
predictive prescriptions that have the form

ẑN(x) ∈ argmin
z∈]

∑N

i#1
wN,i(x)c(z; yi), (3)

where wN,i(x) are weight functions derived from the
data. We motivate specific constructions inspired by
a variety of predictive ML methods. We briefly sum-
marize a selection of these constructions thatwefind the
most effective below.

b. We also consider a construction motivated by
the traditional empirical risk minimization (ERM)
approach to ML. This construction has the form

ẑN(·) ∈ argmin
z(·)∈^

1
N

∑N

i#1
c(z(xi); yi), (4)

where ^ is some class of functions. We extend the
standard ML theory of out-of-sample guarantees for
ERM to the case of multivariate-valued decisions
encountered in OR/MS problems. We find, however,
that in the specific context of OR/MS problems, the
construction (4) suffers from some limitations that do
not plague the predictive prescriptions derived from (3).

c. We show that that our proposals are compu-
tationally tractable under mild conditions.

d. We study the asymptotics of our proposals under
sampling assumptions more general than iid by
leveraging universal law-of-large-number results of
Walk (2010). Under appropriate conditions and for
certain predictive prescriptions ẑN(x) we show that
costs with respect to the true distributions converge
to the full information optimum, that is, limN→∞ E ·[
c(ẑN(x);Y)|X # x

] # v∗(x), and that prescriptions con-
verge to true full information optimizers, that is, limN→∞
infz∈Z∗(x) ‖z − ẑN(x)‖ # 0, both for almost everywhere x
and almost surely. We extend our results to the case
of censored data (such as observing demand via sales).

e. We extend the above results to the case in which
some of the decision variables may affect the uncer-
tain variable in unknown ways not encapsulated in the
known cost function. In this case, the uncertain vari-
able Y(z) will be different depending on the deci-
sion and the problem of interest becomes minz∈] E ·[
c(z;Y(z))|X # x

]
. Complicating the construction of a

data-driven predictive prescription, however, is that
the data only includes the realizations Yi # Yi(Zi)
corresponding to historic decisions. For example, in
problems that also involve pricing decisions, price
has an unknown causal effect on demand that must
be determined in order to optimize the full decision z.
We show that under certain conditions our methods
can be extended to this case while preserving favorable
asymptotic properties.

f. We introduce anewmetricP, termed the coefficient
of prescriptiveness, in order to measure the efficacy of a
predictive prescription and to assess the prescriptive
content of covariates X, that is, the extent to which
observing X is helpful in reducing costs. An analogue
to the coefficient of determination R2 of predictive
analytics, P is a unitless quantity that is (eventually)
bounded between 0 (not prescriptive) and 1 (highly
prescriptive).

g. We demonstrate in a real-world setting the power
of our approach. We study an inventory management
problem faced by the distribution arm of an interna-
tional media conglomerate. This entity manages over
1/2 million unique items at some 50,000 retail loca-
tions around the world, with which it has vendor-
managed inventory (VMI) and scan-based trading
(SBT) agreements. On average it ships about 1 billion
units a year. We leverage both internal company data
and, in the spirit of the aforementioned ML applications,
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large-scale public data harvested from online sources,
including IMDb, Rotten Tomatoes, and Google Trends.
These data combined, leveraged by our approach,
lead to large improvements in comparison with base-
line measures, in particular accounting for an 88% im-
provement toward the deterministic perfect-foresight
counterpart.

Of our proposed constructions of predictive pre-
scriptions ẑN(x), the ones thatwefind tobe generally the
most broadly and practically effective are the following:

a. Motivated by k-nearest-neighbors regression
(kNN; Trevor et al. 2001, chap. 13),

ẑkNN
N (x) ∈ argmin

z∈]

∑

i∈1k(x)
c(z; yi), (5)

where 1k(x)# {i# 1, . . . ,N :
∑N

j#1 I[‖x−xi‖ ≥ ‖x−xj‖]≤ k}
is the neighborhood of the k data points that are
closest to x.

b. Motivated by local linear regression (LOESS;
Cleveland and Devlin 1988),

ẑLOESS∗
N (x) ∈ argmin

z∈]

∑n

i#1
ki(x)max

{
1 −

∑n

j#1
kj(x)

· (xj − x)TΞ(x)−1(xi − x), 0
}
c(z; yi),

(6)

where Ξ(x) # ∑n
i#1 ki(x)(xi − x)(xi − x)T, ki(x) # (1 −

(‖xi − x‖/hN(x))3)3I[‖xi − x‖ ≤ hN(x)], and hN(x) > 0
is the distance to the k-nearest point from x.

c. Motivated by classification and regression trees
(CART; Breiman et al. 1984),

ẑCART
N (x) ∈ argmin

z∈]

∑

i:R(xi)#R(x)
c(z; yi), (7)

where R(x) ∈ {1, . . . , r} is the leaf corresponding to
input x in a regression tree trained on SN .

d. Motivated by random forests (RF; Breiman 2001),

ẑRFN (x) ∈ argmin
z∈]

∑T

t#1

1
|{ j :Rt(xj)#Rt(x)}|

·
∑

i:Rt(xi)#Rt(x)
c(z; yi), (8)

where Rt(x) is the leaf map for the tth tree in the
random forest ensemble trained on SN .

Further detail and other constructions are given in
Section 2 and supplemental Section EC.1.

1.1. An Illustrative Example
In this section, we discuss different approaches to
problem (2) and compare them in a two-stage linear
decision-making problem, illustrating the value of
auxiliary data and the methodological gap to be

addressed. We illustrate this with synthetic data but,
in Section 6, we study a real-world problem and use
real-world data.
The specific problem we consider is a two-stage

shipment planning problem. We have a network of dz
warehouses that we use in order to satisfy the demand
for a product at dy locations. We consider two stages
of the problem. In the first stage, some time in ad-
vance, we choose amounts zi ≥ 0 of units of product to
produce and store at each warehouse i, at a cost of
p1 > 0 perunit produced. In the second stage, demandY ∈
Rdy realizes at the locations and we must ship units
to satisfy it. We can ship from warehouse i to location j
at a cost of cij per unit shipped (recourse variable
sij ≥ 0) and we have the option of using last-minute
production at a cost of p2 > p1 per unit (recourse vari-
able ti). The overall problem has the cost function
and feasible set

c(z; y) # p1
∑dz

i#1
zi + min

(t,s)∈4(z,y)
p2

∑dz

i#1
ti

(

+
∑dz

i#1

∑dy

j#1
cijsij

)
, ] # {z ∈ Rdz : z ≥ 0},

where 4(z,y) # {(s, t) ∈ R(dz×dy)×dz : t ≥ 0, s ≥ 0,∑dz
i#1 sij ≥

yj ∀j, ∑dy
j#1 sij ≤ zi + ti ∀i}.

The key concern is that we do not know Y or its
distribution.We consider the situationwherewe only
have data SN # ((x1, y1), . . . , (xN , yN)) consisting of
observations of Y along with concurrent observations
of some auxiliary quantities X that may be associated
with the future value of Y. For example, X may include
past product sales at each of the different locations,
weather forecasts at the locations, or volume of Google
searches for a product to measure consumer attention.
We consider two possible existing data-driven ap-

proaches to leveraging such data for making a decision.
One approach is the sample average approximation of
stochastic optimization (SAA). SAA is only concerned
with the marginal distribution of Y, thus ignoring data
on X, and solves the following data-driven optimi-
zation problem

ẑSAA
N ∈ argmin

z∈]
1
N

∑N

i#1
c(z; yi), (9)

whose objective approximates E
[
c(z;Y)].

Machine learning, on the other hand, leverages the
data on X as it tries to predict Y given observations
X # x. Consider for example a random forest trained
on the data SN . It provides a point prediction m̂N(x)
for the value of Y when X # x. Given this prediction,
one possibility is to consider the approximation of
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the random variable Y by our best-guess value m̂N(x)
and solve the corresponding optimization problem,

ẑpoint-predN ∈ argmin
z∈]

c(z; m̂N(x)). (10)

The objective approximates c
(
z;E

[
Y|X # x

])
. We call

(10) a point-prediction-driven decision.
If we knew the full joint distribution of Y and X,

then the optimal decision having observed X # x is
given by (2). Let us compare SAA and the point-
prediction-driven decision (using a random forest)
to this optimal decision in the two decision problems
presented. Let us also consider our proposals (5)–(8)
and others that will be introduced in Section 2.

We consider a particular instance of the two-stage
shipment planning problem with dz # 5 warehouses
and dy # 12 locations, where we observe some features
predictive of demand. In both cases we consider dx # 3
and data SN that, instead of iid, is sampled from a mul-
tidimensional evolving process in order to simulate real-
world data collection.We give the particular parameters
of the problems in Section EC.6 of the e-companion. In
Figure 1(a), we report the average performance of the
various solutions with respect to the true distributions.

The full-information optimum clearly does the best
with respect to the true distributions, as expected. The
SAA and point-prediction-driven decisions have
performances that quickly converge to suboptimal
values. The former because it does not use observa-
tions on X and the latter because it does not take into
account the remaining uncertainty after observing
X # x.1 In comparison, we find that our proposals
converge upon the full-information optimum given
sufficient data. In Section 4.3, we study the general
asymptotics of our proposals and prove that the
convergence observed here empirically is generally
guaranteed under only mild conditions.

Inspecting the figure further, it seems that ignoring
X and using only the data on Y, as SAA does, is ap-
propriate when there is very little data; in both exam-
ples, SAAoutperforms other data-driven approaches for
N smaller than ∼64. Past that point, our constructions
of predictive prescriptions, in particular (5)–(8), le-
verage the auxiliary data effectively and achieve better,
and eventually optimal, performance. The predictive
prescription motivated by RF is notable in particular
for performing no worse than SAA in the small N re-
gime, and better in the large N regime.
In this example, the dimension dx of the observa-

tions xwas relatively small at dx # 3. Inmany practical
problems, this dimension may well be bigger, po-
tentially inhibiting performance. For example, in our
real-world application in Section 6, we have dx # 91.
To study the effect of the dimension of x on the per-
formance of our proposals, we consider polluting x
with additional dimensions of uninformative com-
ponents distributed as independent normals. The
results, shown in Figure 1(b), show that while some of
the predictive prescriptions show deteriorating per-
formance with growing dimension dx, the predictive
prescriptions based on CART and RF are largely un-
affected, seemingly able to detect the 3-dimensional
subset of features that truly matter. In the supplemental
Section EC.6.2 we also consider an alternative setting
of this experiment where additional dimensions carry
marginal predictive power.

1.2. Relevant Literature
Stochastic optimization like in (1) has long been the
focus of decision making under uncertainty in OR/
MS problems (cf. Birge and Louveaux 2011) as has
its multiperiod generalization known commonly as
dynamic programming (cf. Bertsekas 1995). The so-
lution of stochastic optimization problems like in (1)

Figure 1. Performance of Various Prescriptions with Respect to True Distributions, Averaged over Samples and New
Observations x (Lower Is Better)

Note. Note the horizontal and vertical log scales.
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in the presence of data {y1, . . . , yN} on the quantity of
interest is a topic of active research. The traditional
approach is the sample average approximation (SAA)
where the true distribution is replaced by the empirical
one(cf.Kleywegt et al. 2002, Shapiro 2003, Shapiro and
Nemirovski 2005). Other approaches include sto-
chastic approximation (cf. Robbins and Monro 1951,
Nemirovski et al. 2009), robust SAA(cf. Bertsimas et al.
2018b), and data-driven mean-variance distributionally
robust optimization (cf. Delage and Ye 2010). A notable
alternative approach to decision making under un-
certainty in OR/MS problems is robust optimization
(cf. Ben-Tal et al. 2009) and its data-driven variants
(cf. Bertsimas et al. 2018a). A vast literature considers
the trade-off between the collection of data and op-
timization as informed by data collected so far (cf.
Robbins 1952, Lai andRobbins 1985, Besbes andZeevi
2009). In all these methods for data-driven decision-
making under uncertainty, the focus is on data in the
assumed form of iid observations of the parameter of
interest Y. On the other hand, ML has attached great
importance to the problem of supervised learning
of the conditional expectation (regression) or mode
(classification) of target quantities Y given auxiliary
observations X # x (cf. Trevor et al. 2001, Mohri
et al. 2012).

Statistical decision theory is generally concerned
with the optimal selection of statistical estimators (cf.
Berger 1985, Lehmann and Casella 1998). Following
the early work of Wald (1949), a loss function, such
as the sum of squared errors or of absolute devia-
tions, is specified and the corresponding admissibility,
minimax-optimality, or Bayes-optimality are of main
interest. Statistical decision theory and ML intersect
most profoundly in the realm of regression via em-
pirical risk minimization (ERM), where a regression
model is selected on the criterion of minimizing
empirical average of loss. A range of ML methods
arise from ERM applied to certain function classes
and extensive theory on function-class complexity
has been developed to analyze these (cf. Vapnik 1992,
Bartlett and Mendelson 2003). Such ML methods
include ordinary linear regression, ridge regression,
the LASSO of Tibshirani (1996), quantile regression,
and !1-regularized quantile regression of Belloni and
Chernozhukov (2011). ERM is also closely connected
with M-estimation (Geer 2000), which estimates a dis-
tributional parameter that maximizes an average of
a function of the parameter by the estimate that maxi-
mizes the corresponding empirical average. Unlike
M-estimation theory, which is concerned with esti-
mation and inference, ERM theory is only concerned
with out-of-sample performance and can be applied
more flexibly with less assumptions.

In certain OR/MS decision problems, one can employ
ERM to select a decision policy, conceiving of the loss as

costs. Indeed, the loss function used in quantile regres-
sion is exactly equal to the cost function of the news-
vendorproblem. Ban and Rudin (2018) consider this loss
function and the selection of a univariate-valued linear
functionwith coefficients restricted in !1-norm inorder to
solve a newsvendor problem with auxiliary data, result-
ing in a method similar to Belloni and Chernozhukov
(2011). Kao et al. (2009) study finding a convex com-
bination of two ERM solutions, the least-cost decision
and the least-squares predictor, which they find to be
useful when costs are quadratic. In the supplemental
Section EC.1, we generalize the ERM approach to
general decision problems, where decisions may be
multivariate, and prove a performance guarantee.
Our main predictive-prescription proposals are mo-

tivated more by a strain of nonparametric ML methods
based on local learning, where predictions are made
based on the mean ormode of past observations that are
in some way similar to the one at hand. The most basic
such method is kNN (cf. Trevor et al. 2001, chap. 13),
which defines the prediction as a locally constant
function depending on which k data points lie closest.
A related method is Nadaraya-Watson kernel re-
gression (KR; Nadaraya 1964, Watson 1964). KR
weighting for solving conditional stochastic optimi-
zation problems like in (2) has been considered in
Hanasusanto and Kuhn (2013) and Hannah et al.
(2010), but these have not considered the more gen-
eral connection to a great variety of MLmethods used
in practice nor have they considered asymptotic opti-
mality. A generalization of KR is local polynomial re-
gression (Cameron and Trivedi 2005, p. 311), of which
the LOESS method of Cleveland and Devlin (1988) is
a specific case. Local learning also includes recursive
partitioning methods, which are most often in the
form of trees like the CART method (Breiman et al.
1984). Ensembles of trees, most notably RF of Breiman
(2001), are also a form of local learning and are known
to be flexible learner with competitive performance in
a great range of prediction problems.

2. From Data to Predictive Prescriptions
Recall that we are interested in the conditional-
stochastic optimization problem (2) of minimizing
uncertain costs c(z;Y) after observing X # x. The key
difficulty is that the true joint distribution µX,Y, which
specifies problem (2), is unknown and only data SN is
available. One approach may be to approximate µX,Y
by the empirical distribution µ̂N over the data SN
where each datapoint (xi, yi) is assigned mass 1/N.
This, however, will in general fail unless X has small
and finite support; otherwise, either X # x has not
been observed and the conditional expectation is
undefined with respect to µ̂N or it has been observed,
X # x # xi for some i, and the conditional distribution
is a degenerate distribution with a single atom at yi
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without any uncertainty. Therefore, we require some
way to generalize the data to reasonably estimate the
conditional expected costs for any x. In someways this is
similar to, but more intricate than, the prediction prob-
lem where E [Y|X # x] is estimated from data for any
possiblex ∈ -. Therefore, we aremotivated to consider
predictive methods and their adaptation to our cause.

In the next subsections we propose a selection of
constructions of predictive prescriptions ẑN(x), each
motivated by a local-learning predictive methodology.
All the constructions in this section will take the com-
mon form of defining some data-driven weights wN,i(x)
and optimizing the decision ẑN against a reweighting
of the data, like in (3):

ẑlocalN (x) ∈ argmin
z∈]

∑N

i#1
wN,i(x)c(z; yi). (11)

Whenever the weights are nonnegative, they can be
understood to correspond to an estimated conditional
distribution of Y given X # x.

2.1. kNN
Motivated by kNN regression, we propose

wkNN
N,i (x) # 1

k I[xi is a kNN of x], (12)

giving rise to the predictive prescription (5). Ties
among equidistant data points are broken either
randomly or by a lower-index-first rule. Finding the
kNNs of x can clearly be done in O(Nd) time. This can
be sped up by precomputation (Bentley 1975) or by
approximation (Arya et al. 1998).

2.2. Kernel Methods
Motivated by KR, which uses a kernel K to measure
distances in x, we propose

wKR
N,i (x) #

K
((xi − x)/hN

)
∑N

j#1 K
((xj − x)/hN

) , (13)

where K : Rd → R satisfies
∫
K<∞ and hN > 0, known

as the bandwidth. Our weights (13) also can be thought
of as the ratio of the Parzen-window density estimates
(Parzen 1962) of µX,Y and µX. We restrict our attention
to the following common kernels: K(x) # I [‖x‖ ≤ 1]
(Naı̈ve), K(x) # (1 − ‖x‖2)I [‖x‖ ≤ 1] (Epanechnikov),
and K(x) # (1 − ‖x‖3)3I [‖x‖ ≤ 1] (Tricubic). For exam-
ple, the naı̈ve kernel uniformly weights all neighbors
of x that are within a radius hN .

We also propose a variant with varying band-
widths, motivated by Devroye and Wagner (1980):

wrecursive-KR
N,i (x) # K

((xi − x)/hi
)

∑N
j#1 K

((xj − x)/hj
) . (14)

2.3. Local Linear Methods
Motivated by LOESS (Cleveland andDevlin 1988), we
propose

wLOESS
N,i (x) # w̃N,i(x)∑N

j#1 w̃N,j(x)
,

w̃N,i(x) # ki(x)
(
1 −

∑n

j#1
kj(x)(xj − x)TΞ(x)−1

· (xi − x)
)
, (15)

where Ξ(x) # ∑n
i#1 ki(x)(xi − x)(xi − x)T and ki(x) #

K((xi − x)/hN(x)). This corresponds to the idea of ap-
proximating E

[
c(z;Y)

⃒⃒
X # x

]
locally by a linear func-

tion in x (Cameron and Trivedi 2005, p. 311). Because
the weights in (15) may be negative, we also propose a
modification that only uses the nonnegative weights,
which we show helps with tractability (Section 4.1):

wLOESS∗
N,i (x) # w̃N,i(x)∑N

j#1 w̃N,j(x)
,

w̃N,i(x) # ki(x)max
{
1 −

∑n

j#1
kj(x)(xj − x)T

·Ξ(x)−1(xi − x), 0
}
. (16)

2.4. Trees
Motivated by tree-based methods, given any map
5 : - → {1, . . . , r}, we propose

wCART
N,i (x) # I[5(x)#5(xi)]⃒⃒

{ j :R(xj)#R(x)}
⃒⃒ . (17)

The map 5 corresponds to the disjoint partition - #
5−1(1) / · · · /5−1(r). In particular, we propose using
the partition generated by training CART (Breiman
et al. 1984) on the data Sn, so that5(x) is the identity of
the leaf that an input x is assigned to.2 Notice that the
weights (17) are piecewise constant over the partitions
and therefore the recommended optimal decision
ẑN(x) is also piecewise constant. Therefore, solving r
optimization problems after the recursive partition-
ing process, the resultant predictive prescription can
be fully compiled into a decision tree, with the de-
cisions that are truly decisions. This also retains CART’s
interpretability.

2.5. Ensembles
Motivated by tree-ensemble methods, given T maps
5t : - → {1, . . . , rt}, t # 1, . . . ,T, we propose

wRF
N,i(x) # 1

T

∑T

t#1

I[5t(x) # 5t(xi)]⃒⃒
{ j :Rt(xj) # Rt(x)}

⃒⃒ . (18)
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In particular, we propose to use the binning rules from
the individual trees of a RF (Breiman 2001) trained on
the data Sn. Based on the performance of this approach
seen in Section 1.1, we choose this predictive pre-
scription in our real-world application in Section 6.

3. From Data to Predictive Prescriptions
When Decisions Affect Uncertainty

Up to now, we have assumed that the effect of the de-
cision z on costs is wholly encapsulated in the cost
function and that the choice of z does not directly affect
the realization of uncertainty Y. However, in some
settings, such as in the presence of pricing decisions,
this assumption clearly does not hold. As one in-
creases a price control, demand diminishes, and the
causal effect of pricing on demand is not known a
priori (e.g., can be abstracted in the cost function)
and must be derived from data. In such cases, we
must take into account the effect of our decision z
on the uncertainty Y by considering historical data
{(x1, y1, z1), . . . , (xN , yN , zN)}, where we have also recor-
ded historical observations of the variable Z, which
represents the historical decision taken in each in-
stance. Using potential outcomes, we let Y(z) denote
the value of the uncertain variable that would be
observed if decision z were chosen. (For detail on
potential outcomes and history, see Imbens and
Rubin 2015, chap. 1–2.) For each data point i, only
the realization corresponding to the chosen decision zi
is revealed, yi # yi(zi). The main issue we face in
dealing with such is known as the fundamental problem
of causal inference: we do not observe the counter-
factuals yi(z) for any z 0# zi. Thus, when trying to score
how a new decision zwould have done in a particular
historical instance in the data, we are faced with the
problem that we do not know what our cost c(z; yi(z))
would have been. This cost function is distinct from the
observed cost function c(z; yi) # c(z; yi(zi)), in stark con-
trast to the setting considered in the previous sections.

Because only some parts of our decision may have
unknown effects on uncertainty, we decompose our
decision variable into the part with unknown effect (e.g.,
pricing decisions) and known effect (e.g., production
decisions) in the following way:

Assumption 1 (Decomposition of Decision). For some
decomposition z # (z1, z2) only z1 ∈ Rdz1 affects uncer-
tainty, that is,

Y(z1, z2) # Y(z1, z′2) ∀(z1, z2), (z1, z′2) ∈ ].

For brevity, we write Y(z) # Y(z1). And we let ]1(z2) #
{z1 : (z1, z2) ∈ ]}, ]1 # {z1 : ∃z2 (z1, z2) ∈ ]}, ]2(z1) #
{z2 : (z1, z2) ∈ ]}, ]2 # {z2 : ∃z1 (z1, z2) ∈ ]}.

For example, in pricing, if z1 ∈ [0,∞) represents a
price control for a product and Y represents realized

demand, then {(z1,Y(z1)) : z1 ∈ [0,∞)} represents the
random demand curve. If in the ith data point the
price was zi1, then we only observe the single point
(zi1, yi(zi1)) on this random curve. Decision components
z2 could represent, for example, a production and
shipment plan, which does not affect demand but
does affect final costs as encapsulated in the cost
function c(z; y).
The immediate generalization of problem (2) to this

setting is

v∗(x) # min
z∈]

E
[
c(z;Y(z))

⃒⃒
X # x

]
,

z∗(x) ∈ ]∗(x) # argmin
z∈]

E
[
c(z;Y(z))

⃒⃒
X # x

]
. (19)

This problem depends on understanding the joint
distribution of (X,Y(z)) for each z ∈ ] and, in this full
information setting, chooses z for least expected cost
given the observation X # x and the effect z would have
on the uncertaintyY(z). Assumption 1 allows problem
(19) to encompass the standard conditional stochastic
optimization problem (2) by letting z # z2 and dz1 # 0.
On the other hand, Assumption 1 is nonrestrictive in
the sense that it can be as general as necessary by
letting z # z1, that is, no decomposing into parts of
unknown effect and known no effect. For these rea-
sons, we maintain the notation v∗(x), z∗(x), ]∗(x).
Given only the data (xi, yi, zi) on (X,Y,Z) and with-

out any assumptions, problem (19) is in fact not well
specified because of the missing data on the coun-
terfactuals. In particular, the most we can hope to
learn from observations of (X,Y,Z) is the joint dis-
tribution of (X,Y,Z). However, there may be many
joint distributions of (X, {Y(z) : z ∈ ]}), each giving
rise to a different solution z∗(x) in problem (19), that all
agree with a given single joint distribution of (X,Y #
Y(Z),Z) under some choice of distribution for Z (cf.
Bertsimas and Kallus 2016). For example, in the most
general setting, it may impossible to discern whether
high demand was due to low prices or other factors,
such as consumer interest, season, or advertising.
To eliminate this issue, we must make additional

assumptions about the data. Here, we assume that
controlling for X is sufficient for isolating the effect of
z on Y.

Assumption 2 (Ignorability). For every z ∈ ], Y(z) is in-
dependent of Z conditioned on X.

In words, Assumption 2 says that, historically, X
accounts for all the features influencing managerial
decision making that may also correlate with the
potential outcomes Y(z). In causal inference, this as-
sumption is standard for ensuring identifiability of
causal effects (Rosenbaum and Rubin 1983).
In stark contrast to many situations in causal infer-

ence dealing with latent self-selection, Assumption 2
is particularly defensible in our setting. In the setting
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we consider, Z represents historical managerial de-
cisions and, like future decisions to be made by the
learned predictive prescription, these decisions must
have been made based on observable quantities avail-
able to the manager. As long as these quantities were
also recorded as part of X, then Assumption 2 is
guaranteed to hold. Alternatively, were decisions Z
taken at random for exploration, then Assumption 2
holds trivially.

3.1. Adapting Local-Learning Methods
We now show how to generalize the predictive pre-
scriptions from Section 2 to solve problem (19) when
decisions affect uncertainty based on data on (X,Y,Z).
Webeginwith a rephrasingof problem (19) based onAs-
sumptions 1 and2. Theproof is given in thee-companion.

Theorem 1. Under Assumptions 1 and 2, problem (19) is
equivalent to

min
(z1,z2)∈]

E
[
c(z;Y)

⃒⃒
X # x, Z1 # z1

]
. (20)

Note that problem (20) depends on the distribution of
the data (X, Y, Z), does not involve unknown counter-
factuals, and has the form of a conditional stochastic
optimization problem. Correspondingly, all predictive-
prescriptive local-learning methods from Section 2 can
be adapted to this problem by simply augmenting the
data xi with zi1. In particular, we can consider data-
driven predictive prescriptions of the form

ẑN(x) ∈ argmin
z∈]

∑N

i#1
wN,i(x, z1)c(z; yi), (21)

where wN,i(x, z1) are weight functions derived from
the data by taking the same approach used in Section 2
but treating z1 aspart of theXdata.Thus, theobjectiveof
problem (21) can be solely computed from the ob-
served data, given a weighting scheme wN,i(x̃) and a
cost function c(z; y). In particular, for each method in
Section 2, to compute the objective for a given z # (z1, z2),

we let x̃i # (xi, zi1), construct weights wN,i(x̃) based on
data S̃N # {(x̃1, y1), . . . , (x̃N , yN)}, and plug wN,i(x̃) into
(21). For example, our kNN approach applied to (19)
has the form (21) with weights

wkNN
N,i (x, z1) # 1

k I
[(xi, zi1) is a kNN of (x, z1)

]
.

Then ẑN(x) would be given by optimizing this ob-
jective over z ∈ ]. As we discuss in Section 4.2, there
is an increased computational burden in this last step of
optimizing problem (21) over zwhen decisions affect
uncertainty, compared with our standard predictive pre-
scriptions from Section 2. To address this, we propose
both a discretization approach and a specialized algo-
rithmfor the case of tree-basedweights. Furthermore,we
show in Section 4.4 that this approach produces pre-
scriptions that are asymptotically optimal even when
our decisions have an unknown effect on uncertainty.

3.2. Example: Two-Stage Shipment Planning
with Pricing

Consider a pricing variation on our two-stage ship-
ment planning problem from Section 1.1. We in-
troduce an additional decision variable z1 ∈ [0,∞) for
the price at which we sell the product. The uncertain
demand at the dy locations,Y(z1), depends on the price
we set. In the first stage, we determine price z1 and
amounts z2 at dz2 warehouses. In the second stage, in-
stead of shipping from warehouses to satisfy all de-
mand, we can ship as much as we would like. Our
profit is the price times number of units sold minus
production and transportation costs. Assuming we
behave optimally in the second stage, we can write
the problem using the cost function and feasible set

c(z; y) # p1
∑dz2

i#1
z2,i + min

(t,s)∈Q(z,y)
(p2

∑dz2

i#1
ti

+
∑dz2

i#1

∑dy

j#1
(cij − z1)sij),

] # {(z1, z2) ∈ R1+dz2 : z1, z2 ≥ 0
}
,

Figure 2. Performance of Various Prescriptions in the Two-Stage Shipment Planning with a Pricing Problem
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where 4(z,y) # {(s, t) ∈ R(dz×dy)×dz : t ≥ 0, s ≥ 0,∑dz
i#1 sij ≤

yj ∀j,∑dy
j#1 sij ≤ z2,i + ti ∀i}.

Wenow consider observing not onlyX and Y but also
Z1. We consider the same parameters of the problem
used in Section 1.1 with an added unknown effect of
price on demand so that higher prices induce lower
demands. The particular parameters are given in
Section EC.6 of the e-companion. In Figure 2, we
report the average negative profits (production and
shipment costs less revenues) of various solutions
with respect to the true distributions.We include the full
information optimum (19) and all our local-learning
methods applied as described in Section 3.1. Again, we
compare with SAA and to the point-prediction-driven
decision (using a random forest to fit m̂N(x, z1), a pre-
dictive model based on both x and z1).

We see that our local-learning methods converge
upon the full-information optimum as more data be-
comes available. On the other hand, SAA, which con-
siders only data yi, will always have out-of-sample
profits 0 as it will drive z1 to infinity, where demand
goes to zero faster than linear. The point-prediction-
driven decision performs comparatively well for small
N, learning quickly the average effect of pricing, but
does not converge to the full-information optimum
as we gather more data. Overall, our predictive-
prescription using RF that addresses the unknown ef-
fect of pricing decisions on uncertain demand performs
the best.

4. Properties of Local
Predictive Prescriptions

In this section, we study two important properties of
local predictive prescriptions: computational tracta-
bility and asymptotic optimality. All proofs are given
in the e-companion.

4.1. Tractability
In Section 2, we considered a variety of predictive
prescriptions ẑN(x) that are computed by solving the
optimization problem (3). An important question is
whether this optimization problem is computation-
ally tractable to solve. As an optimization problem,
problem (3) differs from the problem solved by the
standard SAA approach (9) only in the weights given
to different observations. Therefore, it is similar in
its computational complexity, and we can defer to
computational studies of SAA, such as Shapiro and
Nemirovski (2005), to study the complexity of solving
problem (3). For completeness, we develop sufficient con-
ditions for problem (3) to be solvable in polynomial time.

Theorem 2. Fix x and weights wN,i(x) ≥ 0. Suppose ] is a
closed convex set and let a separation oracle for it be given.
Suppose also that c(z; y) is convex in z for every fixed y, and
let oracles be given for evaluation and subgradient in z. Then

for any x we can find an ε-optimal solution to (3) in time
and oracle calls polynomial in N0, d, log(1/ε) where N0 #∑N

i#1 I[wN,i(x)> 0] ≤ N is the effective sample size.

Note that all weights presented in Section 2 are
nonnegative, with the exception of local regression
(15), which is what led us to their nonnegative
modification (16).

4.2. Tractability When Decisions Affect Uncertainty
Solving problem (21) with general weightswi

N(x, z1) is
generally hard as the objective of problem (21) may be
nonconvex in z. In some specific instances we can
maintain tractability, while in others we can devise
specialized approaches that allowus to solve problem
(21) in practice.
In the simplest case, if ]1 # {z11, . . . , z1b} is discrete,

then the problem can be simply solved by optimizing
once for each fixed value of z1, letting z2 remain
variable.

Theorem 3. Fix x and weights wN,i(x, z1) ≥ 0. Suppose
]1 # {z11, . . . , z1b} is discrete and that ]2(z1j) is a closed
convex set for each j # 1, . . . , b and let a separation oracle for
it be given. Suppose also that c((z1, z2); y) is convex in z2 for
every fixed y, z1 and let oracles be given for evaluation and
subgradient in z2. Then for any x we can find an ε-optimal
solution to (21) in time and oracle calls polynomial in N0, b,
d, log(1/ε) where N0 # ∑N

i#1 I[wN,i(x)> 0] ≤ N is the ef-
fective sample size.

Note that the convexity in z2 condition is weaker
than convexity in z, which would be sufficient.
Alternatively, if ]1 is not discrete, we can approach

the problem using discretization, which leads to ex-
ponential dependence in z1’s dimension dz1 and the
precision log(1/ε).

Theorem 4. Fix x and weights wN,i(x, z1) ≥ 0. Suppose
c((z1, z2); y) is L-Lipschitz in z1 for each z2 ∈ ]2, that ]1 is
bounded, and that ]2(z1) is a closed convex set for each z1 ∈
]1 and let a separation oracle for it be given. Suppose also
that c((z1, z2); y) is convex in z2 for every fixed y, z1 and let
oracles be given for evaluation and subgradient in z2. Then,
for any x, we can find an ε-optimal solution to (21) in time
and oracle calls polynomial in N0, b, d, log(1/ε), (L/ε)dz1 ,
where N0 # ∑N

i#1 I
[
wN,i(x)> 0

] ≤ N is the effective sample
size.

The exponential dependence in dz1 and super-
logarithmic dependence in 1/ε limit this approach to
small dz1 (although dz may still be big). For example,
we use this approach in our pricing example in
Section 3.2, where dz1 # 1, to successfully solve many
instances of (21).
For the specific case of tree weights, we can dis-

cretize the problem exactly, leading to a particularly
efficient algorithm in practice. Suppose we are given
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the CART partition rule 5 : - × ]1 → {1, . . . , r}, then
we can solve problem (21) exactly as follows:

1. Let x be given and fix

wCART
N,i (x, z1) #

I[5(x, z1) # 5(xi, zi1)]⃒⃒{
j : R(xj, zj1) # R(x, z1)

}⃒⃒ .

2. Find the partitions that contain x, ) # {j : ∃z1,
(x, z1) ∈ R−1( j)}, and compute the constraints on z1
in each part, ]̃1j #

{
z1 : ∃x, (x,z1) ∈R(−1)( j)} for j ∈).

This is easily done by going down the tree and at each
node, if the node queries the value of x we only take
the branch that corresponds to the value of our given x
and if the node queries the value of a component of z1,
then we take both branches and record the linear
constraint on z1 on each side.

3. For each j ∈ ), solve

vj # min
z∈]:z∈]̃1j

∑

i:R(xi ,zi1)#j
c(z; yi),

zj # argmin
z∈]:z∈]̃1j

∑

i:R(xi ,zi1)#j
c(z; yi).

(These can be solved for in advance for each j # 1, . . . , r
to reduce computation at query time.)

4. Let j(x) # argminj∈) vj and ẑn(x) # zj(x).
This procedure solves (21) exactly for weights

wCART
N,i (x, z1).

4.3. Asymptotic Optimality
In Section 1.1, we saw that our predictive prescriptions
ẑN(x) converged to the full-information optimum as
the sample size N grew. Next, we show that this
anecdotal evidence is supported by mathematics and
that such convergence is guaranteed under only mild
conditions. We define asymptotic optimality as the
desirable asymptotic behavior for ẑN(x).
Definition 1. We say that ẑN(x) is asymptotically optimal
if, with probability 1, we have that for µX-almost-
everywhere x ∈ -,

lim
N→∞

E
[
c(ẑN(x);Y)

⃒⃒
X # x

] # v∗(x).

We say ẑN(x) is consistent if, with probability 1, we
have that for µX-almost-everywhere x ∈ -,

lim
N→∞

‖ẑN(x) − Z∗(x)‖ # 0, where

‖ẑN(x) − Z∗(x)‖ # inf
z∈Z∗(x)

‖ẑN(x) − z‖.

To a decision maker, asymptotic optimality is the most
critical limiting property as it says that decisions
implemented will have performance reaching the
best possible. Consistency refers to the consistency of
ẑN(x) as a statistical estimator for the full-information

optimizer(s) ]∗(x) and is perhaps less critical for a
decision maker but will be shown to hold nonetheless.
Asymptotic optimality depends on our choice of

ẑN(x), the structure of the decision problem (cost
function and feasible set), and on howwe accumulate
our data SN . The traditional assumption on data
collection is that it constitutes an iid process. This is a
strong assumption and is often only a modeling ap-
proximation. The velocity and variety of modern data
collection often means that historical observations do
not generally constitute an iid sample in any real-
world application. Therefore, we are motivated to
consider an alternative model for data collection, that
of mixing processes. Mixing encompasses processes
such as ARMA, GARCH, and Markov chains, which
can correspond to sampling from evolving systems
like prices in a market, daily product demands, or the
volume of Google searches on a topic. Althoughmany
of our results extend to such settings via generalized
strong laws of large numbers (Walk 2010), we present
only the iid case in themain text to avoid cumbersome
exposition and defer these extensions to the supple-
mental Section EC.2.2. For the rest of the section, let us
assume that SN is generated by iid sampling.
As mentioned, asymptotic optimality also depends

on the structure of the decision problem. Therefore,
we will also require the following conditions.

Assumption 3 (Existence). The full-information prob-
lem (2) is well defined: E[|c(z;Y)|]<∞ for every z ∈ ] and
]∗(x) 0# Ø for almost every x.

Assumption 4 (Continuity). c(z; y) is equicontinuous in z:
for any z ∈ ] and ε> 0 there exists δ> 0 such that |c(z; y)−
c(z′; y)| ≤ ε for all z′ with ‖z − z′‖ ≤ δ and y ∈ =.

Assumption 5 (Regularity). ] is closed and nonempty and
in addition either

1. ] is bounded or
2. lim inf‖z‖→∞ infy∈= c(z; y) > −∞ and for every x∈-,

there exists Dx ⊂= such that lim‖z‖→∞ c(z;y)→∞ uni-
formly over y∈Dx and P(y∈Dx

⃒⃒
X# x)>0.

Under these conditions, we have the following suffi-
cient conditions for asymptotic optimality, which are
proven as consequences of universal pointwise conver-
gence results of related supervised learning problem of
Walk (2010) and Hansen (2008).

Theorem 5 (kNN). Suppose Assumptions 3–5 hold. Let
wN,i(x) be as in (12) with k # min

{3CNδ4,N − 1
}
for some

C> 0, 0< δ< 1. Let ẑN(x) be as in (3). Then ẑN(x) is as-
ymptotically optimal and consistent.

Theorem 6 (Kernel Methods). Suppose Assumptions 3–5
hold and that E [|c(z;Y)max {log |c(z;Y)|, 0}]<∞ for each
z. Let wN,i(x) be as in (13) with K being any of the kernels in
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Section 2.2 and hN #CN−δ for C>0, 0<δ<1/dx. Let ẑN(x)
be as in (3). Then ẑN(x) is asymptotically optimal and consistent.
Theorem7 (RecursiveKernelMethods). Suppose Assumptions
3–5 hold. Let wN,i(x) be as in (14) with K being the naı̈ve
kernel and hi # Ci−δ for some C> 0, 0< δ< 1/(2dx). Let
ẑN(x) be as in (3). Then ẑN(x) is asymptotically optimal and
consistent.

Theorem 8 (Local Linear Methods). Suppose Assumptions
3–5 hold, that µX is absolutely continuous and has density
bounded away from 0 and ∞ on the support of X and twice
continuously differentiable, and that costs are bounded over
y for each z (i.e., |c(z; y)| ≤ g(z)) and twice continuously
differentiable. Let wN,i(x) be as in (15) with K being any of
the kernels in Section 2.2 and hN # CN−δ for some C> 0,
0< δ< 1/dx. Let ẑN(x) be as in (3). Then ẑN(x) is asymp-
totically optimal and consistent.

Theorem 9 (Nonnegative Local Linear Methods). Suppose
Assumptions 3–5 hold, that µX is absolutely continuous and
has density bounded away from 0 and ∞ on the support of
X and twice continuously differentiable, and that costs are
bounded over y for each z (i.e., |c(z; y)| ≤ g(z)) and twice
continuously differentiable. Let wN,i(x) be as in (16) with K
being any of the kernels in Section 2.2 and hN # CN−δ for
some C> 0, 0< δ< 1/dx. Let ẑN(x) be as in (3). Then ẑN(x) is
asymptotically optimal and consistent.

Although we do not have firm theoretical results
on the asymptotic optimality of the predictive pre-
scriptions based on CART [Equation (7)] and RF
[Equation (8)], we have observed them to converge
empirically in Section 1.1.

4.4. Asymptotic Optimality When Decisions
Affect Uncertainty

When decisions affect uncertainty, the condition for
asymptotic optimality is subtly different. Under the
identity Y # Y(Z), Definition 1 does not accurately
reflect asymptotic optimality and indeed methods
that do not account for the unknown effect of the de-
cision (e.g., if we apply our methods without regard
to this effect, ignoring data on Z1) will not reach the
full-information optimum given by (19). Instead, we
would like to ensure that our decisions have optimal
cost when taking into account their effect on un-
certainty. The desired asymptotic behavior for ẑN(x)
when decisions affect uncertainty is the more general
condition given below.

Definition 2. We say that ẑN(x) is asymptotically optimal
if, with probability 1, we have that for µX-almost-
everywhere x ∈ -, as N → ∞

lim
N→∞

E
[
c(ẑN(x);Y(ẑN(x)))

⃒⃒
X # x

]

# min
z∈]

E
[
c(z;Y(z))

⃒⃒
X # x

]
.

The following theorem establishes asymptotic opti-
mality for our predictive prescription based on either
kernel methods, local linear methods, or nonnegative
local linear methods as adapted to the case when
decisions affect uncertainty. Like in Section 3.1, we
use x̃i to denote (xi, zi1) and S̃N # (x̃1, y1), . . . , (x̃N , yN).
To avoid issues of existence, we focus on weak mini-
mizers ẑN(x) of (21) and on asymptotic optimality.

Theorem 10. Suppose Assumptions 1–5 (case 1) hold, that
µ(X,Z1) is absolutely continuous and has density bounded
away from 0 and ∞ on the support of X,Z1 and twice
continuously differentiable, and that costs are bounded over y
for each z (i.e., |c(z; y)| ≤ g(z)) and twice continuously dif-
ferentiable. Let wN,i(x̃) be as in (13), (15), or (16) applied to S̃N
with K being any of the kernels in Section 2.2 and with hN #
CN−δ for some C> 0, 0< δ< 1/(dx + dz1). Then for any
εN → 0, any ẑN(x) that εN-minimizes (21) (has objective
value within εN of the infimum) is asymptotically optimal.

5. Metrics of Prescriptiveness
In this section,we develop a relative, unitlessmeasure
of the efficacy of a predictive prescription. An abso-
lute measure of efficacy is marginal expected costs,

R(ẑN) # E
[
E
[
c (ẑN(X);Y)

⃒⃒
X
]] # E

[
c(ẑN(X);Y)

]
.

Givenavalidationdata setSNv #
((x1, y1), · · · , (xNv , yNv)),

we estimate R(ẑN) as

R̂Nv(ẑN) #
1
Nv

∑Nv

i#1
c
(
ẑN(xi); yi

)
.

If SNv is disjoint and independent of the training set
SN , then this is an out-of-sample estimate that pro-
vides an unbiased estimate of R(ẑN). While an abso-
lute measure allows one to compare two predictive
prescriptions for the same problem and data, a rel-
ative measure can quantify the overall prescriptive
content of the data and the efficacy of a prescription
on a universal scale. For example, in predictive an-
alytics, the coefficient of determination R2—rather
than the absolute root-mean-squared error—is a
unitless quantity used to quantify the overall quality
of a prediction and the predictive content of data X.
R2 measures the fraction of variance of Y reduced, or
“explained,” by the prediction based on X. Another
wayof interpretingR2 is as the fraction of theway thatX
and a particular predictive model take us from a data-
poor prediction (the sample average) to a perfect-
foresight prediction that knows Y in advance.
We define an analogous quantity for the predictive

prescription problem, which we term the coefficient of
prescriptiveness. It involves three quantities. First,

R̂Nv(ẑN) #
1
Nv

∑Nv

i#1
c
(
ẑN(xi); yi

)
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is the estimated expected costs because of our pre-
dictive prescription. Second,

R̂∗
Nv

# 1
Nv

∑Nv

i#1
min
z∈]

c
(
z; yi

)

is the estimated expected costs in the deterministic
perfect-foresight counterpart problem, in which one
has foreknowledge of Y without any uncertainty (note
the difference to the full-information optimum, which
does have uncertainty). Third,

R̂Nv(zSAA
N ) # 1

Nv

∑Nv

i#1
c
(
ẑSAA
N ; yi

)
, where

ẑSAA
N ∈ argmin

z∈]
1
N

∑N

i#1
c
(
z; yi

)

is the estimated expected costs of a data-driven pre-
scription that is data poor, only based on Y data. This
is the SAA solution to the prescription problem,
which serves as the analogue to the sample average
as a data-poor solution to the prediction problem.
Using these three quantities, we define the coefficient
of prescriptiveness P as follows:

P # 1 − (R̂Nv(ẑN) − R̂∗
Nv
) / (R̂Nv(zSAA

N ) − R̂∗
Nv
). (22)

The coefficient of prescriptiveness P is a unitless quantity
bounded above by 1. A low P denotes that X provides
little useful information for the purpose of prescribing
an optimal decision in the particular problem at hand
or that ẑN(x) is ineffective in leveraging the in-
formation in X. A high P denotes that taking X into
consideration significantly affects reducing costs and
that ẑN(x) is effective in leveraging X for this purpose.

In particular, if X is independent of Y then,
under appropriate conditions, limN,Nv→∞ R̂Nv(zSAA

N ) #

minz∈]E [c(z;Y)] #E
[
minz∈]E

[
c(z;Y)

⃒⃒
X
]]# limN,Nv→∞ ·

R̂Nv (ẑN), so as N grows, we would see P reach 0. On
the other hand, if Y is measurable with respect to X,
that is, Y is a function of X, then, under appropriate
conditions, limN,Nv→∞ R̂Nv(ẑN)#E[minz∈]E[c(z;Y)

⃒⃒
X]]#

E[minz∈]c(z;Y)]# limNv→∞ R̂∗
Nv
, so asN grows,wewould

see P reach 1. It is also notable that in the extreme
case that Y is a function of X, then Y#m(X), where
m(x)#E

[
Y
⃒⃒
X# x

]
so that E[minz∈] c(z;Y)]#E[minz∈]

c(z;m(X))], and so in this extreme case we would also
see P reach 1 for ẑpoint-predN under appropriate condi-
tions. On the other hand, in the independent case,
we would always see P reach a nonpositive number
under ẑpoint-predN .
Let us consider the coefficient of prescriptiveness

in the example from Section 1.1. For each of our
predictive prescriptions and for each N, we mea-
sure the out of sample P on a validation set of size
Nv # 200 and plot the results in Figure 3(a). Notice
that even when we converge to the full-information
optimum, P does not approach 1 asN grows. Insteadwe
see that for the same methods that converged to the full-
information optimum, we have a P that approaches
0.46. This number represents the extent of the po-
tential that X has to reduce costs in this particular
problem. It is the fraction of the way that knowledge
of X, leveraged correctly, takes us from making a
decision under full uncertainty about the value of Y to
making a decision in a completely deterministic set-
ting. As is the case with R2, what magnitude of P de-
notes a successful application depends on the context.
In our real-world application in Section 6, we find an
out-of-sample P of 0.88.
Toconsider the relationshipbetweenhowpredictiveX

is of Y and the coefficient of prescriptiveness, we con-
sider modifying the example by varying the magnitude
of residual noise, fixing N # 214. The details are given

Figure 3. The Coefficient of Prescriptiveness P in the Example from Section 1.1, Measured out of Sample

Note. The dashed horizontal line denotes the theoretical limit.

Bertsimas and Kallus: From Predictive to Prescriptive Analytics
1036 Management Science, 2020, vol. 66, no. 3, pp. 1025–1044, © 2019 INFORMS



in the supplemental Section EC.6. As we vary the
noise,wecanvary theaveragecoefficientofdetermination

R2 # 1 − 1
dy

∑dy

i#1

E [Var(Yi |X)]
Var(Yi)

from 0 to 1. In the original example, R2 # 0.16. We plot
the results in Figure 3(b), noting that the behavior
matches our description of the extremes above. In
particular,whenX andYare independent (R2 # 0),we
see most methods having a zero coefficient of prescrip-
tiveness, less successful methods (KR) have a some-
what negative coefficient, and the point-prediction-driven
decision has a very negative coefficient. When Y is
measurable with respect to X (R2 # 1), the coefficient of
the optimal decision reaches 1, most methods have a
coefficient near 1, and the point-prediction-driven de-
cision also has a coefficient near 1 and beats most other
methods. While neither extreme exists in practice,
throughout the range in between the extremes, our
predictive prescriptions perform the best and in partic-
ular the one based on RF.

6. A Real-World Application
In this section, we apply our approach to a real-
world problem faced by the distribution arm of an
international media conglomerate (the vendor) and
demonstrate that our approach, combined with ex-
tensive data collection, leads to significant advan-
tages. The vendor has asked us to keep its identity
confidential as well as data on sale figures and specific
retail locations. Therefore, some figures are shown on
relative scales.

6.1. Problem Statement
The vendor sells over 0.5 million entertainment media
titles on CD, DVD, and BluRay at over 50,000 retailers
across the United States and Europe. On average they
ship 1 billion units in a year. The retailers range from
electronic home goods stores to supermarkets, gas
stations, and convenience stores. These have vendor-
managed inventory (VMI) and scan-based trading
(SBT) agreements with the vendor. VMI means that the
inventory is managed by the vendor, including re-
plenishment (which they perform weekly) and pla-
nogramming. SBT means that the vendor owns all
inventory until sold to the consumer, at which point the
retailer buys the unit from the vendor and sells it to the
consumer. This means that retailers have no cost of
capital in holding the vendor’s inventory.

The cost of a unit of entertainment media consists
mainly of the cost of production of the content.Media-
manufacturing and delivery costs are secondary in
effect. Therefore, the primary objective of the vendor
is simply to sell as many units as possible and the

main limiting factor is inventory capacity at the retail
locations. For example, at many of these locations,
shelf space for the vendor’s entertainment media is
limited to an aisle endcap display and no back-of-the-
store storage is available. Thus, themain loss incurred
in over-stocking a particular product lies in the loss of
potential sales of another product that sold out but
could have sold more. In studying this problem, we
will restrict our attention to the replenishment and
sale of video media only and to retailers in Europe.
Apart from the limited shelf space the other main

reason for the difficulty of the problem is the particularly
high uncertainty inherent in the initial demand for new
releases. Whereas items that have been sold for at least
one period have a somewhat predictable decay in de-
mand, determining where demand for a new release
will start is a much less trivial task. At the same time,
new releases present the greatest opportunity for high
demand and many sales.
We now formulate the full-information problem.

Let r # 1, . . . , R index the locations, t # 1, . . . , T index
the replenishment periods, and j # 1, . . . , d index the
products. Denote by zj the order quantity decision for
product j, by Yj the uncertain demand for product j,
and by Kr the overall inventory capacity at location r.
Considering only the main effects on revenues and
costs as discussed in the previous paragraph, the
problem decomposes on a per-replenishment-period,
per-location basis. We therefore wish to solve, for
each t and r, the following problem:

v∗(xtr) #max E

[∑d

j#1
min {Yj, zj}

⃒⃒
X # xtr

]

#
∑d

j#1
E
[
min{Yj, zj}

⃒⃒
Xj # xtr

]

s.t. z ≥ 0,
∑d

j#1
zj ≤ Kr, (23)

where xtr denotes auxiliary data available at the be-
ginning of period t in the (t, r)th problem.
Note that had there been no capacity constraint in

problem (23) and a per-unit ordering costwere added,
the problem would decompose into d separate news-
vendor problems, the solution to each being exactly a
quantile regression on the regressors xtr. As it is, the
problem is coupled, but, fixing xtr, the capacity con-
straint can be replaced with an equivalent per-unit
ordering cost λ via Lagrangian duality and the op-
timal solution is attained by setting each zj to the λth

conditional quantile of Yj. However, the reduction to
quantile regression does not hold because the dual
optimal value of λ simultaneously depends on all the
conditional distributions of Yj for j # 1, . . . , d.
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6.2. Applying Predictive Prescriptions to
Censored Data

In applying our approach to problem (23), we face the
issue thatwehavedata on sales, not demand. That is, our
data on the quantity of interestY is right-censored. In this
section, we develop a modification of our approach to
correct for this. The results in this sectionapplygenerally.

Suppose that instead of data {y1, . . . , yN} on Y, we
have data {u1, . . . ,uN} on U # min{Y, V} where V is
an observable random threshold, data on which we
summarize via δ # I[U<V]. For example, in our
application, V is the on-hand inventory level at the
beginning of the period. Overall, our data consist
of S′N # {(x1, u1, δ1), . . . , (xN , uN , δN)}.

One way to deal with this is by considering de-
cisions (sock levels) as affecting uncertainty (sales).
As long as demand and threshold are conditionally
independent given X, Assumption 2 will be satisfied
and we can use the approach (21) developed in
Section 3.1. However, the particular setting of cen-
sored data has a lot structure where we actually know
the mechanism of how decision affect uncertainty.
This allows us to develop a special-purpose solution
that side-steps the need to learn the structure of this
dependence and computationally less tractable ap-
proaches (Section 4.2).

To correct for the fact that our observations are, in
fact, censored, we develop a conditional variant of the
Kaplan-Meier method (cf. Kaplan and Meier 1958,
Huh et al. 2011) to transform our weights appropriately.
Let (i) denote the ordering u(1) ≤ · · · ≤ u(N). Given the
weights wN,i(x) generated based on the naı̈ve as-
sumption that yi # ui, we transform these into the
weights

wKaplan-Meier
N,(i) (x) # I

[
δ(i) # 1

]
(

wN,(i)(x)∑N
!#i wN,(!)(x)

)

· ∏
k≤i−1 : δk#1

(∑N
!#k+1 wN,(!)(x)∑N
!#k wN,(!)(x)

)
. (24)

Next, we show that the transformation (24) preserves
asymptotic optimality under certain conditions. The
proof is in the e-companion.

Theorem 11. Suppose that Y and V are conditionally in-
dependent given X, that Y and V share no atoms, that for
every x ∈ - the upper support of V given X # x is greater
than the upper support of Y given X # x, and that costs are
bounded over y for each z (i.e., |c(z; y)| ≤ g(z)). Let wN,i(x) be
as in (12), (13), (14), (15), or (16) and suppose the corre-
sponding assumptions of Theorem 5, 6, 7, 8, or 9 apply. Let
ẑN(x) be as in (3) but using the transformed weights (24).
Then ẑN(x) is asymptotically optimal and consistent.

The assumption thatY andV share no atoms (which
holds in particular if either is continuous) provides
that δ a.s.# I[Y ≤ V] so that the event of censorship is

observable. In applying this to problem (23), the as-
sumption that Y and V are conditionally independent
given X, which mirrors Assumption 2, will hold if X
captures at least all of the information that past
stocking decisions, which are made before Y is re-
alized, may have been based on. The assumption on
bounded costs applies to problem (23) because the
cost (negative of the objective) is bounded in [−Kr, 0].
6.3. Data
In this section, we describe the data collected. To get
at the best data-driven predictive prescription, we com-
bine both internal company data and public data har-
vested fromonline sources. The predictive power of such
public data has been extensively documented in the lit-
erature (cf.Gruhl et al. 2005, Asur andHuberman 2010,
Goel et al. 2010, Da et al. 2011, Choi and Varian 2012,
Kallus 2014). Here, we study its prescriptive power.

6.3.1. Internal Data. The internal company data con-
sists of 4 years of sale and inventory records across
the network of retailers, information about each of the
locations, and information about each of the items.
We aggregate the sales data by week (the replenish-

ment period of interest) for each feasible combination
of location and item. As discussed above, these sales-
per-week data constitute a right-censored observation
of weekly demand, where censorship occurs when an
item is sold out.We developed the transformedweights
(24) to tackle this issue exactly. Figure 4 shows the
sales life cycle of a selection of titles in terms of their
marketshare when they are released to home enter-
tainment (HE) sales and onwards. Because new re-
leases can attract up to almost 10% of all sales in the
week of their release, they pose a great sales oppor-
tunity, but, at the same time, significant demand
uncertainty. Information about retail locations in-
cludes to which chain a location belongs and the
address of the location. To parse the address and
obtain a precise position of the location, including
country and subdivision, we used the Google Geo-
coding API (Application Programming Interface).3

Information about items include the medium (e.g.,

Figure 4. Percentage of All Sales in the German State of
Berlin Taken up by Each of 13 Selected Titles, Starting from
the Point of Release of Each Title to HE Sales
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DVDor BluRay) and an item “title.” The title is a short
descriptor composed by a local marketing team in
charge of distribution and sales in a particular region
andmay often include information beyond the title of
the underlying content. For example, a hypothetical
film titled The Film sold in France may be given the
item title “THE FILMDVD+ LIVRET - EDITION FR,”
implying that the product is a French edition of the
film, sold on a DVD, and accompanied by a booklet
(livret), whereas the same film sold in Germany on
BluRay may be given the item title “FILM, THE
(2012) - BR SINGLE,” indicating it is sold on a single
BluRay disc.

6.3.2. Public Data: ItemMetadata, Box Office, and Reviews.
We sought to collect additional data to characterize
the items and how desirable they may be to con-
sumers. For this we turned to the Internet Movie
Database (IMDb; www.imdb.com) and Rotten To-
matoes (RT; www.rottentomatoes.com). IMDb is an
online database of information on films and TV series.
RT is a website that aggregates professional reviews
from newspapers and online media, along with user
ratings, of films and TV series.

To harvest information from these sources on the items
being sold by the vendor, we first had to disambiguate
the item entities and extract original content titles from
the item titles. Having done so, we extract the follow-
ing information from IMDb: type (film, TV, other/
unknown); U.S. original release date of content (e.g.,
in theaters); average IMDb user rating (0–10); number
of IMDb users voting on rating; number of awards
(e.g., Oscars for films, Emmys for TV) won and number
nominated for; the main actors (i.e., first-billed); plot
summary (30–50 words); genre(s) (of 26; can be multi-
ple); andMPAA rating (e.g., PG-13, NC-17) if applicable.
And the following information from RT: professional
reviewers’ aggregate score; RT user aggregate rating;
number of RT users voting on rating; and if a film, then
American box office gross when shown in theaters.

In Figure 5, we provide scatter plots of some of
these attributes against sale figures in the first week of
an HE release. Notice that the number of users voting
on the rating of a title is much more indicative of HE
sales than the quality of a title as reported in the
aggregate score of these votes.

6.3.3. Public Data: Search Engine Attention. In the
above, we saw that box office gross is reasonably
informative about future HE sale figures. The box
office gross we are able to access, however, is for the
American market and is also missing for various
European titles. We therefore would like additional
data to quantify the attention being given to different
titles and to understand the local nature of such at-
tention. For this, we turned to Google Trends (GT;
www.google.com/trends).4

For each title, we measure the relative Google
search volume for the search term equal to the original
content title in each week from 2011 to 2014 (inclu-
sive) over the whole world, in each European country,
and in each country subdivision (states in Germany,
cantons in Switzerland, autonom communities in
Spain, etc.). In each such region, after normaliz-
ing against the volume of our baseline query, the
measurement can be interpreted as the fraction of
Google searches for the title in a given week out of all
searches in the region, measured on an arbitrary but
(approximately) common scale between regions.
In Figure 6,we compare this search engine attention

to sales figures in Germany for two unnamed films.5

Comparing panels (a) and (b), we first notice that the
overall scale of sales correlates with the overall scale
of local search engine attention at the time of theatrical
release, whereas the global search engine attention is
less meaningful (note vertical axis scales, which are
common between the two figures). Looking closer at
differences between regions in panel (b), we see that,
while showing in cinemas, unnamed film 2 garnered
more search engine attention in North Rhine-Westphalia

Figure 5. Scatter Plots of Various Data from IMDb and RT (Horizontal Axes) Against Total European Sales During the
First Week of an HE Release (Vertical Axes, Rescaled to Anonymize) and Corresponding Coefficients of Correlation (ρ)
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(NW) than in Baden-Württemberg (BW) and, corre-
spondingly, HE sales in NW in the first weeks after an
HE release were greater than in BW. In panel (a),
unnamed film 1 garnered similar search engine at-
tention in both NW and BW and similar HE sales as
well. In panel (b), we see that the search engine at-
tention to unnamed film 2 in NW accelerated in ad-
vance of the HE release, which was particularly
successful in NW. In panel (a), we see that a slight bump
in search engine attention 3 months into HE sales cor-
responded to a slight bump in sales. These observations
suggest that local search engine attentionboth at the time
of local theatrical release and in recent weeks may be
indicative of future sales volumes.

6.4. Constructing Auxiliary Data Features and a
Random Forest Prediction

For each instance (t, r) of problem (23) and for each
item i we construct a vector of numeric predictive
features xtri that consist of backward cumulative sums
of the sale volume of the item i at location r over the
past three weeks (as available; e.g., none for new
releases), backward cumulative sums of the total sale
volume at location r over the past three weeks, the
overallmeansalevolumeat location rover the past 1 year,
the number of weeks since the original release date
of the content (e.g., for a new release this is the length of
time between the premier in theaters to release onDVD),
an indicator vector for the country of the location r, an
indicator vector for the identity of chain to which the
location r belongs, the total search engine attention to
the title i over the first two weeks of local theatrical
release globally, in the country, and in the country-
subdivision of the location r, backward cumulative sums
of search engine attention to the title i over the past

three weeks globally, in the country, and in the country-
subdivision of the location r, and features capturing
item information harvested from IMDb and RT.
Much of the information harvested from IMDb and

RT is unstructured in that it is not numeric features,
such as plot summaries, MPAA ratings, and actor list-
ings. To capture this information as numerical features
that can be used in our framework, we use a range of
clustering and community-detection techniques, which
we fully describe in supplemental Section EC.7.
We end up with dx # 91 numeric predictive fea-

tures. Having summarized these numerically, we
train a RF of 500 trees to predict sales. In training the
RF, we normalize the sales in each instance by the
training-set average sales in the corresponding lo-
cation; we denormalize after predicting. To capture
the decay in demand from time of release in stores, we
train a separate RFs for sale volume on the kthweek on
the shelf for k # 1, . . . , 35 and another RF for the
“steady state” weekly sale volume after 35 weeks.

Figure 7. Top-25 x Variables in Predictive Importance

Figure 6. Weekly Search Engine Attention for Two Unnamed Films in the World and in Two Populous German States (Solid
Lines) and Weekly HE Sales for the Same Films in the Same States (Dashed Lines)

Note. The scales are arbitrary but common between regions and the two plots.
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For k # 1, we are predicting the demand for a new
release, the uncertainty of which, as discussed in
Section 6.1, constitutes one of the greatest difficulties
of the problem to the company. In terms of predictive
quality, when measuring out-of-sample performance
we obtain an R2 # 0.67 for predicting sale volume for
new releases. Figure 7 shows the top feature in pre-
dictive importance, measured as the average over
trees of the change in mean-squared error as percentage
of total variance when the value of the variables is ran-
domly permuted among the out-of-bag training data. In
Figure 8, we show theR2 obtained also for predictions
at later times in the product life cycle, compared with
the performance of a baseline heuristic that always
predicts this week’s demand for next.

6.5. Applying Our Predictive Prescriptions to
the Problem

In the last section, we discussed how we construct
RFs to predict sales, but our problem of interest is to
prescribe order quantities. To solve our problem (23),
we use the forests we trained to construct weights
wN,i(x) exactly like in (18), then we transform these
like in (24), and, finally, we prescribe data-driven
order quantities ẑN(x) like in (8). Thus, we use our
data to go from an observation X # x of our varied

auxiliary data directly to a replenishment decision on
order quantities.
We would like to test how well our prescription

does out-of-sample and as an actual live policy. To do
this we consider what we would have done over the
150 weeks from December 19, 2011 to November 9,
2014 (inclusive). At each week, we consider only data
from time prior to that week, train our RFs on this
data, and apply our prescription to the current week.
Then we observe what had actually materialized and
score our performance.
There is one issuewith this approach to scoring: our

historical data only consists of sales, not demand.
While we corrected for the adverse effect of demand
censorship on our prescriptions using the trans-
formation (24), we are still left with censored demand
when scoring performance as described above. To
have a reasonable measure of how good our method
is, we therefore consider the problem (23) with ca-
pacities Kr that are a quarter of their nominal values.
In this way, demand censorship hardly ever be-
comes an issue in the scoring of performance. To be
clear, this correction is necessary just for a counterfac-
tual scoring of performance; not in practice for apply-
ing the predictive prescription. The transformation
(24) already corrects for prescriptions trained on

Figure 8. Out-of-Sample Coefficients of Determination R2 for Predicting Demand Next Week

Figure 9. Performance of Our Prescription over Time

Notes. Vertical dashes indicate major release dates. The vertical axis is shown in terms of the location’s capacity, Kr.
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censored observations of the quantity Y that affects
true costs.

We compare the performance of our method with
three other quantities. One is the performance of the
perfect-forecast policy, which knows future demand
exactly (no distributions). Another is the performance
of a data-driven policy without access to the auxiliary
data (i.e., SAA). Because the decay of demand over the
lifetime of a product is significant, to make it a fair
comparison we let this policy depend on the distribu-
tions of product demand based on how long it has
been on the market. That is, it is based on T separate
data sets where each consists of the demands for a
product after t weeks on the market (again, consid-
ering only past data). Because of this handicap, we
term it SAA++ henceforth. The last benchmark is the
performance of a point-prediction-driven policy us-
ing the RF sale prediction. Because there are a mul-
titude of optimal solutions zj to (23) if wewere to letYj
be deterministic and fixed as our prediction m̂N,j(x), we
have to choose a particular one for the point-prediction-
driven decision. The one we choose sets order levels to
match demand and scale to satisfy the capacity constraint:
ẑpoint-predN,j (x)#Krmax{0,m̂N,j(x)}/∑d

j′#1max{0,m̂N,j′(x)}.
The ratio of the difference between our perfor-

mance and that of the prescient policy and the dif-
ference between the performance of SAA++ and that
of the prescient policy is the coefficient of prescrip-
tiveness P. When measured out-of-sample over the
150-week period as these policiesmake live decisions,
we obtain P # 0.88. Said another way, in terms of our
objective (sales volumes), our data X and our prescrip-
tion ẑN(x) gets us 88% of the way from the best data-
poor decision to the impossible perfect-foresight decision.
This is averaged over just under 20,000 locations.

In Figure 9, we plot the performance over time at
four specific locations, the city of which is noted. Blue
vertical dashes in each plot indicate the release dates
of the 10 biggest first-week sellers in each location,
which turn out to be the same. Two pairs of these
coincide on the same week. The plots show a general
ordering of performance with our policy beating the
point-prediction-driven policy [but not always as

seen in a few days in Figure 9(b)], which, in turn, beats
SAA++ [but not always as seen in a few days in
Figure 9(d)]. The P of our policy specific to these lo-
cations are 0.89, 0.90, 0.85, and 0.86. The corre-
sponding P of the point-prediction-driven policy are
0.56, 0.57, 0.50, 0.40. That the point-prediction-driven
policy outperforms SAA++ (even with the handicap)
and provides a significant improvement as measured
by P can be attributed to the informativeness of the
data collected in Section 6.3 about demand. On most
major release dates, the point-prediction-driven policy
does relatively worse, which can be attributed to the
fact that demand for new releases has the greatest
amount of (residual) uncertainty, which the point-
prediction-driven policy ignores. When we leverage
this data in a manner appropriate for inventory man-
agement using our approach, we nearly double the
improvement. We also see that on most major release
dates, our policy seizes the opportunity to match the
perfect foresight performance, but on a few it falls
short. In Figure 10, we plot the overall distribution of
P of our policy over all retail locations in Europe.

7. Concluding Remarks
In this paper, we combined ideas from ML and OR/
MS in developing a framework, along with specific
methods, for using data to prescribe optimal decisions
in OR/MS problems that leverage auxiliary observa-
tions. We motivate our methods based on existing
predictive methodology from ML, but, in the OR/MS
tradition, focus on the making of a decision and on the
effect on costs, revenues, and risk. Our approach is gen-
erally applicable, tractable, asymptotically optimal, and
leads to substantive and measurable improvements in a
real-world context.
We believe that the above qualities, together with the

growing availability of data and in particular auxiliary
data in OR/MS applications, afford our proposed ap-
proach apotential for substantial impact in the practice of
OR/MS.
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Endnotes
1Note that the uncertainty of the point prediction in estimating the
conditional expectation, gleaned, for example, via the bootstrap, is
the wrong uncertainty to take into account, in particular because it
shrinks to zero as N → ∞.
2A more direct application of tree methods to the prescription
problem would have us minimize the cost of taking the best con-
stant decision zj in each leaf j # 1, . . . , r: minR minz1 ,...,zr∈]

∑r
j#1 ·∑

i:5(xi)#j c(zj; yi). Like in CART, this can be heuristically done by
recursively partitioning, at each stage minimizing the sum of costs
across the candidate split. However, because we must consider
splitting on each variable and at each data point to find the best split
(cf. Trevor et al. 2001, p. 307), this can be overly computationally
burdensome for all, except for the simplest problems that admit a
closed-form solution, such as least sum of squares or the newsvendor
problem. Similarly, a forest ensemble of such trees trained on bootstrap
samples and randomfeature subsets canbeused inour ensembleproposal.
3 See https://developers.google.com/maps/documentation/geocoding
for details.
4While GT is available publicly online, access to massive-scale
querying and week-level trends data are not public. See the
acknowledgments.
5These films must remain unnamed because a simple search can
reveal their European distributor and hence the vendor who prefers
their identity be kept confidential.
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